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Studies dedicated to the homogenization approach of microcracked media are largely 
focused on the determination of effective elastic properties. Some works investigate 
other properties, but most of them consider only open cracks. This paper intends 
to provide effective thermal properties related to the conduction problem taking into 
account the unilateral effect (opening/closure of cracks). Such analysis considers steady-
state heat transfer within an initially isotropic media weakened by randomly oriented 
cracks. According to the boundary conditions, estimates and bounds based on Eshelby-
like formalism are developed to derive closed-form expressions for effective thermal 
conductivity and resistivity in a fixed microcracking state.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les techniques d’homogénéisation des milieux microfissurés sont principalement em-
ployées pour l’étude des comportements mécaniques élastiques. D’autres applications sont 
également possibles, mais elles demeurent le plus souvent limitées à la considération de 
défauts ouverts. Ce travail vise à déterminer les propriétés effectives thermiques de milieux 
microfissurés dans le cadre d’une conduction stationnaire. Les matériaux étudiés sont 
initialement isotropes et présentent des microfissures d’orientation arbitraire pouvant être 
ouvertes ou bien fermées (effet unilatéral). S’appuyant sur une démarche de type Eshelby, 
les expressions des conductivités et résistivités effectives issues de différents schémas 
d’homogénéisation et bornes d’encadrement sont ici présentées et discutées.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 
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1. Introduction

Homogenization is a useful tool for the modelling and analysis of the behaviour of heterogeneous materials. One of 
its main objectives is to estimate their overall properties from their microstructural features (phase properties, inclusions 
distribution and geometry, etc.). This topic is even more interesting when there is a lack of experimental data. Several 
studies have been dedicated to the micromechanical analysis of microcracked media, especially to address their elastic 
behaviour (for instance [1–3] for initially isotropic materials). Still, many practical applications require proper modelling of 
other properties such as thermal, transport and piezoelectric properties, which are not investigated much [4–8].

Taking into account the unilateral effect (opening and closure of cracks) makes the estimation of the said effective 
properties challenging, and this even more as microcracks are oriented defects. Some authors have investigated the elastic 
problem taking into account both the induced anisotropy and recovery phenomenon due to crack closure, through averaging 
up-scaling methods [1,9–11]. Such modelling strategy has never been applied before for a steady-state heat conduction 
problem. So, in this work, we intend to address this issue through an Eshelby-like approach and derive effective thermal 
properties of microcracked media, focusing mainly on the unilateral effect.

2. Theoretical framework

Assuming length scale separation, this study deals with continuum micromechanics. A homogenization process providing 
microstructure–properties relationships is conducted through mean-field theory. Present developments for effective thermal 
properties are inspired by the mathematical analogy between elasticity and steady-state heat conduction problems [12,13]:

stress σ ⇐⇒ heat flux q

strain ε ⇐⇒ temperature gradient g

stiffness C ⇐⇒ thermal conductivity λ

compliance S ⇐⇒ thermal resistivity ρ

Hooke’s law ⇐⇒ Fourier’s law

Similarly to the macroscopic stress and strain under equilibrium conditions, the macroscopic temperature gradient G
(respectively macroscopic heat flux Q ) corresponds to the average values of its microscopic quantity g (resp. q) under 
stationary thermal conditions [14]:

G = 1

�

∫
�

g d� = 〈g〉 and Q = 〈q〉 (1)

with � being the volume of the Representative Volume Element (RVE).
Moreover, the linear thermal behaviour is given by Fourier’s heat conduction law:

q = −λ · g and g = −ρ · q (2)

where λ (resp. ρ) is the symmetric second-order thermal conductivity (resp. resistivity) tensor.
Let us consider a 3D RVE of a microcracked media. Such material exhibits a matrix-inclusion typology in which each 

phase (matrix, cracks) are supposed to exhibit a homogeneous behaviour. Two different boundary conditions can be imposed 
at the outer boundary δ� of the RVE, i.e. either uniform macroscopic temperature gradient (G imposed at δ�) or uniform 
macroscopic heat flux (Q imposed at δ�). Assuming an initial natural state, the microscopic and macroscopic quantities can 
be linked linearly as [15]:

g(x) = A(x) · G and q(x) = B(x) · Q ∀ x ∈ � (3)

where A (resp. B) is the second-order gradient localization (resp. flux concentration) tensor such that 〈A〉 = 〈B〉 = I (I being 
the second-order identity tensor). The average temperature gradient G and heat flux Q of the heterogeneous media as 
obtained by (1) can thus be related by effective thermal tensors:

Q = −λhom · G and G = −ρhom · Q (4)

where λhom (resp. ρhom) is the overall thermal conductivity (resp. resistivity) of the microcracked media. Let denote λm and 
ρm = λ−1

m the matrix conductivity and resistivity, λc,i and ρc,i = λ−1
c,i the conductivity and resistivity of the ith (i = 1...N) 

family of parallel cracks and fc,i their volume fraction. Simplifying assumptions regarding phase distribution allow approxi-
mating local fields within constituents by their phase averages, so that the overall thermal properties for the microcracked 
media can be given as:
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Fig. 1. (a) RVE with arbitrarily oriented microcracks, (b) penny-shaped crack geometry.

λhom = λm +
N∑

i =1

fc,i (λc,i − λm) · 〈A〉c,i (5)

ρhom = ρm +
N∑

i =1

fc,i (ρc,i − ρm) · 〈B〉c,i (6)

where 〈·〉r = 1
�r

∫
�r

· d� denotes the average value over the volume of the phase r for r = {m, ci}. At this point, effective ten-
sors λhom (directly derived from uniform gradient-based boundary conditions) and ρhom (naturally obtained from uniform 
flux-based boundary conditions) strictly describe the same equivalent homogeneous media, so that these tensors are inverse 
of each other, i.e. λhom = ρ−1

hom.
Following this modelling strategy, closed-form approximations of effective thermal tensors can be derived whenever lo-

calization and concentration tensors (denoted as 〈A〉est
c,i and 〈B〉est

c,i resp.) are estimated. Works on the single-inhomogeneity 
problem, initiated by Eshelby [16] in elasticity and extended to thermoelasticity [13,17], provide some solutions to such 
issue if the inclusions are ellipsoidal. Indeed, the temperature gradient and heat flux local fields in the crack can be approx-
imated by the uniform respective local fields obtained in an ellipsoid embedded in an infinite matrix subjected to uniform 
boundary conditions denoted as G∞ and Q ∞ . Assuming perfect interfaces, several representations can be developed accord-
ing to the remote conditions, matrix properties, phase volume fractions, geometry and properties of the inhomogeneity.

For the present case, the RVE is composed of an initially isotropic homogeneous media, considered as the matrix. Its 
thermal conductivity and resistivity tensors are given by λm = λm I and ρm = ρm I (λm and ρm are the scalar thermal 
conductivity and resistivity, with λm = ρ−1

m ) respectively. This matrix is weakened by randomly distributed microcracks 
with arbitrary orientations (Fig. 1a). A convenient way to represent such kind of defect is under the form of a flat oblate 
ellipsoid (mean semi-axes a and c, Fig. 1b). For the ith family of parallel microcracks, ni denotes their unit vector, ωi = ci/ai

their mean aspect ratio, and di = Ni a3
i their scalar crack density parameter (Ni is the number of cracks in the ith family 

per unit volume, [18]). The crack volume fraction is thus fc,i = 4
3 πdiωi . Under these assumptions, estimated solutions for 

localization and concentration tensors 〈A〉est
c,i and 〈B〉est

c,i depend on the following depolarization tensor SE
i (similar to the 

Eshelby tensor of elastic problems) [19]:

SE
i =

(
1 − π

2
ωi

)
ni ⊗ ni + π

4
ωi (I − ni ⊗ ni) (7)

The last important points for the considered problem deal with the geometry and properties of the cracks. Regarding the 
former, the configuration of penny-shaped cracks corresponds to the limit case ωi → 0, which must be introduced at the 
very end of the mathematical developments. Moreover, the fact that microcracks can be either open or closed according to 
compressive loads is introduced through the latter point. In both cases, cracks are assumed to be isotropic (λc,i = λc,i I and 
ρc,i = ρc,i I), but they behave differently depending on the state of the microcrack:

• for the open case, λc,i = 0 and ρc,i → ∞, which corresponds to adiabatic conditions on the cracks lips,
• following the works of Deudé et al. [10], closed cracks are represented by a fictitious isotropic material with scalar 

conductivity λc,i = λ∗ and resistivity ρc,i = ρ∗ , which accounts for some heat transfer continuity at the closure of 
cracks (frictionless contact). Taking λ∗ = λm and ρ∗ = ρm may seem natural, but we will nevertheless continue the 
development for a general case where λ∗ and ρ∗ are scalars with the conditions λ∗ �= 0 and ρ∗ �→ ∞.

3. Gradient-based formulation

By gradient-based formulation, we mean to impose a uniform macroscopic temperature gradient G at the outer boundary 
δ� of the RVE. Such a situation corresponds to the classical strain-based condition of Eshelby’s problem. Let us consider 
three different approaches to derive the effective properties.



S.R. Rangasamy Mahendren et al. / C. R. Mecanique 347 (2019) 944–952 947
Fig. 2. Phase properties and boundary conditions at infinity: (a) imposed temperature gradient G∞ , (b) imposed heat flux Q ∞ .

3.1. Dilute scheme

In a first approach, we are going to estimate the homogenized properties assuming a dilute density of cracks, which 
amounts to consider no interaction between defects. Remote conditions on the Eshelby problem lead in that case to the 
macroscopic gradient (G∞ = G , see Fig. 2a). Hence, the gradient localization tensor is given by:

〈A〉dil
c,i =

[
I + PE

i · (λc,i − λm
)]−1

(8)

where PE
i = SE

i · ρm is the symmetric second-order interaction tensor (equivalent to the first Hill tensor in elasticity). Eq. (8)
can be simplified as:

〈A〉dil
c,i =

[
I − SE

i

(
1 − ξi

)]−1
with ξi = λc,i

λm
(9)

Eq. (5) thus leads to:

λdil
hom = λm

[
I − 4

3
π

N∑
i =1

di ωi
(
1 − ξi

) 〈A〉dil
c,i

]
(10)

We can see that the λdil
hom depends on the aspect ratio ωi in our case. However, we show that the quantity ωi

(
1 − ξi

) 〈A〉dil
c,i

tends to a limit Ti when ωi → 0, so:

λdil
hom = λm ·

[
I − 4

3
π

N∑
i =1

di Ti

]
with Ti = lim

ωi→ 0
ωi

(
1 − ξi

) [
I − SE,i

(
1 − ξi

)]−1
(11)

Such expansion includes both crack configurations, i.e., for open cracks λc,i = 0, so ξi = 0, while for closed cracks λc,i = λ∗ �=
0, so ξi �= 0. Taking this into account, tensor Ti for the ith family of cracks is given by:

Ti =
⎧⎨
⎩

2

π
ni ⊗ ni, if cracks are open

0, if cracks are closed
(12)

Accordingly, Eq. (11) can be simplified as:

λdil
hom = λm ·

[
I − 8

3

∑
i/open

di ni ⊗ ni

]
(13)

in which only open cracks contribute in an additive manner. As an example, the effective thermal conductivity of a media 
weakened by a single family of parallel microcracks with unit normal n and density d takes the form:

λdil
hom =

⎧⎨
⎩λm − 8

3
d λm n ⊗ n, if cracks are open

λm, if cracks are closed
(14)
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3.2. Mori–Tanaka scheme

In line with the Eshelby-like approach, the Mori–Tanaka (MT) scheme [20] considers cracks embedded in an infinite 
media (with matrix properties) that is subjected to the average temperature gradient over the matrix phase (G∞ = 〈g〉m, 
see Fig. 2a). Introducing inhomogeneities inside a thermally-stressed matrix in this way amounts to account for some 
interactions between cracks. Averaging rule (1) leads to the following localization tensor:

〈A〉MT
c,i = 〈A〉dil

c,i ·
[

fm I +
N∑

j =1

fc, j 〈A〉dil
c, j

]−1

(15)

Now Eq. (5) can be written as:

λMT
hom = λm ·

[
I + 4

3
π

N∑
i =1

di Ti

]−1

= λm ·
[

I + 8

3

∑
i/open

di ni ⊗ ni

]−1

(16)

since lim
ωi→ 0

ωi

[
I − SE,i

(
1 − ξi

)]−1 = Ti also. Accordingly, the specific conduction behaviour for the simple case of a single 

family of parallel microcracks according to their status described is as follows:

λMT
hom =

⎧⎪⎨
⎪⎩

λm − 8

3
d λm

1

1 + 8d
3

n ⊗ n, if cracks are open

λm, if cracks are closed
(17)

3.3. Ponte Castañeda–Willis upper bound

Based on the Hashin–Shtrikman bounds [21], Ponte Castañeda and Willis (PCW) derived explicit strain-based bounds 
for the effective stiffness of composite materials with ellipsoidal inclusions [3]. Their estimate corresponds to a rigorous 
upper bound for the class of cracked media in which the matrix is the stiffest phase. The PCW formulation separately 
accounts for the inclusion shape and spatial distribution, respectively, through fourth-order interaction P E

i and spatial crack 
distribution Pd

c tensors. Using a similar approach for the thermal problem with a second-order spatial distribution tensor
Pd

c , the effective conductivity can be given by:

λPCW
hom = λm +

(
I −

N∑
i =1

fc,i

[(
λc,i − λm

)−1 + PE
i

]−1 · Pd
c

)−1

·
(

N∑
i =1

fc,i

[(
λc,i − λm

)−1 + PE
i

]−1
)

(18)

It is also convenient to observe that:

λPCW
hom = λm ·

(
I +

N∑
i =1

fc,i Mc,i · λm · Pd
c · λm

)−1

·
(

I −
N∑

i =1

fc,i Mc,i · Qd
c

)
(19)

where Mc,i =
[(

ρc,i − ρm

)−1 + QE
i

]−1
, QE

i = λm · (I − PE
i · λm

)
(equivalent to the second Hill tensor in elasticity) and Qd

c =
λm · (I − Pd

c · λm
)
. For simplicity, a spherical spatial distribution is adopted in this study, for which Pd

c reads:

Pd
c = 1

3
ρm (20)

Even though, the PCW formulation is derived from the energy approach, Eq. (18) can be interpreted in the form of Eq. (5)
through the following localization tensor:

〈A〉PCW
c,i = 〈A〉dil

c,i ·
(

fm I +
N∑

j=1

fc, j

[
I + (

PE
j − Pd

c

) · (λc, j − λm
)] · 〈A〉dil

c, j

)−1

(21)

As already emphasized by Ponte Castañeda and Willis, it can be observed that, when Pd
c = PE

i , the PCW scheme corresponds 
to the Mori–Tanaka estimate (Eq. (21) comes to Eq. (15)) while the case Pd

c = 0 leads to the dilute approximation (Eq. (21)
reduces to Eq. (8)).

Taking into account Eqs. (18)–(19), or equivalently Eqs. (21) and (5), the corresponding effective conductivity reads:

λPCW
hom = λm ·

[
I −

(
4

3
π

N∑
di Ti

)
·
(

I + 4

9
π

N∑
di Ti

)−1]
(22)
i=1 i=1
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Keeping in mind Eq. (12), one gets:

λPCW
hom = λm ·

[
I −

(
8

3

∑
i/open

di ni ⊗ ni

)
·
(

I + 8

9

∑
i/open

di ni ⊗ ni

)−1]
(23)

which reduces to:

λPCW
hom =

⎧⎪⎨
⎪⎩

λm − 8

3
d λm

1

1 + 8d
9

n ⊗ n, if cracks are open

λm, if cracks are closed
(24)

for a single family of parallel microcracks. Note that MT (Eq. (17)) and PCW (Eq. (24)) tend to dilute prediction (Eq. (14)) 
when d → 0.

4. Flux-based formulation

This section considers a uniform macroscopic heat flux Q at δ�. Estimates and bound are based on the local fields of 
cracks embedded inside a matrix subjected to a uniform heat flux at infinity (Q ∞). Accordingly, the temperature gradient 
g(x) tends to ρm · Q ∞ when |x| → ∞. This, therefore, amounts to the gradient boundary conditions of the Eshelby-like 
problem that provide the average temperature gradient 〈g〉c over the cracks volume. From the average heat flux in this 
phase 〈q〉c = λc · 〈g〉c, estimates of tensor B can be derived.

4.1. Dilute scheme

For the dilute scheme, the conditions at infinity correspond to the macroscopic heat flux (Q ∞ = Q , see Fig. 2b), so that

〈B〉dil
c,i = λc,i · 〈A〉dil

c,i · ρm =
[

I + QE
i · (ρc,i − ρm

)]−1
(25)

Substituting Eq. (25) into Eq. (6), we get:

ρdil
hom = ρm ·

[
I + 4

3
π

N∑
i =1

di Ti

]
(26)

As previously mentioned, Eq. (26) accounts for the cracks state. For open cracks, ρc,i → ∞, so again ξi = 0, while for closed 
cracks ρc,i = ρ∗ �→ ∞, so ξi �= 0 with the related expression of the Ti tensors provided in Eq. (12). Now,

ρdil
hom = ρm ·

[
I + 8

3

∑
i/open

di ni ⊗ ni

]
(27)

Taking this into account, the expression of the effective resistivity tensor for a single family of cracks becomes:

ρdil
hom =

⎧⎨
⎩ρm + 8

3
d ρm n ⊗ n, if cracks are open

ρm, if cracks are closed
(28)

It should be noted that, according to the boundary condition, the dilute approximation leads to a different representation of 
the thermal behaviour in the open state of the cracks, λdil

hom �= (ρdil
hom)−1. A similar result is obtained in elasticity as well. Yet, 

the effective conductivity and resistivity are obviously inverse of each other for the closed state of cracks, λdil
hom = (ρdil

hom)−1, 
while in this case strain-based or stress-based formulations of elasticity still remain different [11,22].

4.2. Mori–Tanaka scheme

In this case, the remote conditions correspond to the average heat flux over the matrix phase (Q ∞ = 〈q〉m, Fig. 2-b) and 
again, using the average rule, the flux concentration tensor is given by:

〈B〉MT
c,i = 〈B〉dil

c,i ·
[

fm I +
N∑

j =1

fc, j 〈B〉dil
c, j

]−1

(29)

Introducing Eq. (29) into Eq. (6) finally gives:

ρMT = ρdil (30)
hom hom
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From Eqs. (16), (27) and (30), it is clear that the Mori–Tanaka approach leads to the same predictions under gradient or 
flux conditions, both for open and closed microcracks, i.e. λMT

hom = (ρMT
hom)−1. The same conclusion has been drawn for elastic 

properties too [11,22].

4.3. Ponte Castañeda–Willis lower bound

As inspired by [3], Dormieux and Kondo [11] derived a variational stress-based lower bound for the effective compliance 
using an energy approach. Similarly to this work, the thermal resistivity can thus be given as:

ρPCW
hom =

(
I −

N∑
i =1

fc,i Mc,i · Qd
c

)−1

·
(

I +
N∑

i =1

fc,i Mc,i · λm · Pd
c · λm

)
· ρm (31)

From Eqs. (19) and (31), we can observe the equivalence between the upper and lower PCW bounds, since λPCW
hom = (ρPCW

hom )−1. 
As for the gradient-based bound, the above estimate can be interpreted through the following concentration tensor:

〈B〉PCW
c,i = 〈B〉dil

c,i ·
(

fm I +
N∑

j=1

fc, j

[
I + (

QE
j − Qd

c

) · (ρc, j − ρm

)] · 〈B〉dil
c, j

)−1

(32)

Taking into account the spatial distribution adopted in Eq. (20), the flux-based PCW bound leads to the following effective 
thermal resistivity:

ρPCW
hom =

[
I +

(
4

3
π

N∑
i=1

di Ti

)
·
(

I − 8

9
π

N∑
i=1

di Ti

)−1]
· ρm (33)

After introducing Eq. (12), we get:

ρPCW
hom =

[
I +

(
8

3

∑
i/open

di ni ⊗ ni

)
·
(

I − 16

9

∑
i/open

di ni ⊗ ni

)−1]
· ρm (34)

For a single family example considered throughout the study, the above equation comes to:

ρPCW
hom =

⎧⎪⎨
⎪⎩

ρm + 8

3
d ρm

1

1 − 16d
9

n ⊗ n, if cracks are open

ρm, if cracks are closed
(35)

which again tends to the dilute case (Eq. (28)) for d → 0.

5. Discussion

We propose to highlight the consequences of microcracks on thermal properties through the case of a matrix with 
a single family of parallel cracks, for which closed-form expressions of dilute and Mori–Tanaka estimates and variational 
bounds have been provided in the text.

For the open cracks, we note that the material exhibits a damage-induced anisotropy, irrespective of the scheme or 
boundary conditions. To be precise, the effective thermal properties are transversely isotropic around axis n of cracks (see 
Eqs. (14), (17), (24) and (28), (30), (35)). Especially, conductivity (respectively resistivity) is mostly degraded (resp. enhanced) 
along the direction orthogonal to the surface of the cracks, which is consistent with the adiabatic conditions on the lips of 
the cracks. As an illustration, Fig. 3 presents the rose diagrams of the generalized scalar conductivity λ(v) and resistivity 
ρ(v) in the direction of the unit vector v defined by:

λ(v) = v · λhom · v and ρ(v) = v · ρhom · v (36)

On the contrary, we note that closed cracks do not contribute to the degradation or enhancement of thermal conduction 
properties. This result is true regardless of the scheme, boundary conditions, fictitious properties (λ∗, ρ∗) or considered 
direction v. Indeed, in all cases, effective conductivity and resistivity in any direction recover their initial value (of the virgin 
material) at the closure of microcracks, i.e.:

λ(v) = λm and ρ(v) = ρm , ∀ v, if cracks are closed (37)

This means that the continuity of heat transfer is fully ensured when microcracks are closed, with a conduction response 
equal to that inside the homogeneous isotropic (virgin) matrix. Such a conclusion clearly differs from the results microme-
chanically established for elastic properties. Indeed, under frictionless conditions, crack closure leads to partial recovery of 
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Fig. 3. Generalized thermal conductivity λ(v) and resistivity ρ(v) normalized by their initial values for a material weakened by a single family of parallel 
microcracks of unit normal n (cracks density d = 0.1).

Fig. 4. Predictions of homogenization estimates and bounds for the generalized thermal conductivity λ(n) and resistivity ρ(n) for a material weakened by 
a single family of open parallel microcracks of unit normal n.

mechanical properties. Considering, for instance, the Young modulus E(v) = [v ⊗ v :S : v ⊗ v]−1 (resp. the elongation modu-
lus L(v) = [v ⊗v :C : v ⊗v]) with S the compliance tensor (resp. C the stiffness tensor) for a stress-based formulation (resp. 
for a strain-based formulation), it has been demonstrated that closed cracks do not influence the Young modulus E(n) (resp. 
the elongation modulus L(n)) in the direction n normal to the cracks, but still remain active for others directions [23,24]. 
The complete damage deactivation for heat-conduction properties can be attributed to the lesser complexity of the problem 
itself and also to the simple definition of the depolarization tensor. Compared to elastic case, the Eshelby-like tensor SE for 
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conduction behaviour (Eq. (7)) contains only basic information, as it is of the second order, symmetric, and depends only 
on the aspect ratio ω and the orientation n of the crack (no dependency on the matrix properties, like the Eshelby tensor 
does in the elastic case for instance).

At last, it seems relevant to compare the homogenization estimates according to the microcrack density parameter. Con-
clusions for the closed state of microcracks are obvious since in all cases thermal properties are not affected by the defects. 
On the other hand, the open state shows some significant differences between dilute and Mori–Tanaka estimates and PCW 
variational bounds of conductivity, especially as crack density increases (Fig. 4(a)). Yet, similarly to compliance in elasticity, 
the Mori–Tanaka formulation coincides with the dilute case for resistivity (Eq. (30)). This is due to the combination of both 
the spatial crack distribution considered by MT (corresponding to Eshelby distribution) and the specific thermal resistivity 
of the open crack (ρc → ∞). Such point is confirmed by the evolution of the lower bound established in [11], which clearly 
differs from both previous schemes. Fig. 4(b) illustrates the significant role of interactions in resistivity prediction.

6. Conclusion

This note provides homogenization-based estimates and bounds of steady-state heat conduction properties for microc-
racked media. Especially, the influence of unilateral effects (according to the open or closed status of the cracks) on the 
effective thermal behaviour is taken into account. Results show that crack closure leads to a total recovery of the thermal 
conductivity and resistivity of the material, irrespective of the homogenization methods (taking into account or not interac-
tions between microcracks) or boundary conditions. This thus provides relevant information for further works that will be 
dedicated to the thermo-mechanical modelling of materials with evolving damage.
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